\qquad
\qquad

Year 8

Excellence/Exceptional Pathway

End of Topic Assessment

Light

Analysis and Targets

No.	Score	Below/On/Above	Target for next Assessment. How will you achieve it?
1	/5		
2	/4		
3	/5		
4	/5		
5	/4		
6	- 7		

Now complete the "Next Step" sheet you've been given and when finished attach it to the back of the paper.

A pupil is observing the behaviour of a woodpecker. He uses a periscope to look over a wall at a tree, and waits for the bird to land on the trunk.

The pupil can only watch one part of the tree trunk at a time.
(a) Tick the box to show the point on the tree trunk which he can see using the periscope in the position shown.
point A

point B \square
point C \square
point D

point E

(b) Draw the path of the ray of light to show how the pupil sees this point. Use a ruler.

Show the direction of the ray of light.
(c) What should the pupil do to the periscope to watch point C ?
\qquad
\qquad

Q2. A ray of blue light falls on a glass prism as shown in the diagram.

(a) On the diagram, draw the path of the blue ray through the prism and from the prism to the screen. Use a ruler.
(b) The blue ray is replaced by a ray of white light.
(i) What would you now see on the screen?
\qquad

A red filter is placed between the prism and the screen.
(ii) What would you now see on the screen?
\qquad
\qquad
(iii) Explain how the red filter causes the change.
\qquad
\qquad

Q3. Two mirrors at 90° to each other always reflect a ray of light back parallel to the incident ray.
(a) (i) In the diagram below, a ray of light strikes mirror 1 at an angle of 45°.

Complete the diagram to show how the mirrors reflect the ray. Use a ruler and a protractor.

(ii) In the next diagram, a ray of light strikes mirror 1 at a different angle.

Complete the diagram to show how the mirrors reflect the ray. Use a ruler and a protractor.
incident ray of light

(b) Bicycles must have a reflector fixed to the rear mudguard or to the seat.

Limehurst Science Department

The diagram shows part of a bicycle reflector and an incident ray of light. The light passes through the flat surface and is reflected from the small 'mirrors'.
(i) In which direction is the ray of light reflected?
\qquad
(ii) At night, car drivers can easily see bicycle reflectors in the beam from their headlights. Explain why.
\qquad
\qquad
(iii) Why is a plane mirror not suitable as a bicycle reflector?
\qquad
\qquad

Limehurst Science Department

Q4. (a) When light travels from air to glass, it changes direction.
What is the name of this effect?
\qquad
(b) The diagram below shows three rays of light A, B and C striking a glass block.

The paths of A and B have been drawn.
Continue ray C to show its path through the block and out the other side.
Use a ruler.
(c) The diagram below shows three rays of light, D, E and F, from a torch placed under water.

The path of ray E is shown as it leaves the water and enters the air.
Continue the paths of D and F as they pass through the air.
Use a ruler.

Q5. A white box of photographic paper has written on it, in large red letters:

WARNING:
 OPEN ONLY BY THE LIGHT OF A RED SAFELIGHT

(a) The box of paper is in a photographic darkroom where the only light is from a red lamp.
(i) What colour does the white box appear?
\qquad
(ii) What colour does the red writing appear?
\qquad
(b) The red lamp is now switched off and a green lamp is switched on.
(i) What colour does the red writing appear in green light?
\qquad
(ii) Explain why the writing appears to be this colour.
\qquad
\qquad

Q6.

(a) Some students investigate a converging lens.

The students set up the apparatus as shown.
Not to scale

distant object
sharp image of the distant object
Complete the sentence by putting a cross (\boxtimes) in the box next to your answer.
(i) The distance \mathbf{X} is

A the focal length
B the object distance
C the eyepiece distance
D the magnification
(ii) Use words from the box to complete the sentences.

The size of the image is \qquad the distant object.
The type of image formed on the screen is a \qquad diverging real smaller than the same as virtual
(b) The diagram shows a ray of light as it arrives at a lens.

Draw the path of the ray inside the lens.
(c) The students use a telescope to view the Moon.

Light from the Moon takes 1.3 s to reach the students.
The speed of light is $300000 \mathrm{~km} / \mathrm{s}$.
Calculate the distance to the Moon.

$$
\text { distance }=\text { speed } \times \text { time }
$$

(d) Complete the sentence by putting a cross (\boxtimes) in the box next to your answer.

A satellite orbits the Moon.
Radio waves from this satellite transfer
A matter only
B energy and matter
C information and matter
D energy and information

E/E MARK SCHEME

M1. (a) point E
if more than one box is ticked award no mark
(b) continuous ray from point to eye
accept a ray coming either from point E or from the answer to (a)
straight lines to the mirrors at appropriate angles reflections must be at the surfaces of the mirrors and lines must not extend behind the mirrors
the angle between the incident and the reflected rays should be approximately 90°
this mark may be awarded even if the reflection from the second mirror to the eye is not given
arrow anywhere along ray pointing from tree to eye
(c) any one from

- move bottom of periscope towards wall
accept 'tilt it' or 'change the angle'
- make it upright
- lift it higher
accept 'move it up' or 'push periscope
further over the wall'
accept 'change angle of top mirror'
or 'change angle of mirrors
do not accept 'move it'

M2. (a) one mark is for a ray which bends to the right when it enters the prism the ray must be within the limits shown

Limehurst Science Department

one mark is for a ray which bends downwards when it leaves the prism the ray must be within the limits shown
award no marks if the lines are not straight
(b) (i) a spectrum
accept 'all the colours' or 'the colours of the rainbow' do not accept 'a rainbow' or 'colours'
(ii) a red spot or a red line
accept 'red light' or 'red' or 'all the colours
except red would disappear'
do not accept 'a red screen'
(iii) it absorbs or stops all the other colours
accept 'it only lets red light pass'
do not accept 'it lets red light pass'

M3. (a) answers should be straight lines which meet mirror 2 with tolerances indicated by the hatching behind the mirror
(i)

both rays required for the mark
reflections at surfaces of the mirrors positioned within the range shown with reflected ray parallel to incident ray disregard any arrows
(ii)

both rays required for the mark reflections at surfaces of the mirrors positioned within the range shown with reflected ray parallel to incident ray disregard any arrows
(b) (i) parallel to the incident ray or back towards the source
accept 'back the same way'
accept correctly drawn rays on the diagram
do not accept 'reflected back or upwards or to the left'
(ii) light is reflected back towards car or driver or headlights
(iii) light would probably not be reflected back towards car or driver accept 'light is reflected in a different direction or away' do not accept 'it would dazzle the driver'

M4. (a) refraction or refracting
(b) - a ray bending towards the normal at the first surface
accept a ray that is within the shaded area
both sections of the ray must be straight and continuous ignore any arrows

- an emerging ray bending away from the normal at the second surface

> accept an emerging ray that is within the shaded area the emergent ray does not have to be parallel to the incident ray
(c) - a continuous straight line for ray D
ignore any arrows ignore any reflected rays

- a continuous ray F that bends away from the normal

accept a ray drawn within the shaded area do not accept an emergent ray that does not refract

M5. (a) (i) red
do not accept 'pink' or 'pinky red'
(ii) red
accept 'dark red'
(b) (i) black
do not accept 'green' or 'brown' or 'browny black' or 'dark colour'
(ii) any one from

- red ink absorbs green light
- red ink only reflects red light
- no green light is reflected from the ink accept 'no light is reflected' accept 'there is no red light in green'
do not accept 'there is no red in green'

M6.

	Answer	Acceptable answers	Mark
(a)(i)	A the focal length (1)		(1)
(a)(ii)	smaller than (1) real (1)		(2)
(b)	- Any (more or less) straight ray which changes direction inside the lens (1)	Ray does not need to touch far side. Allow slight discontinuities Ignore any ray drawn beyond the $2^{\text {nd }}$ surface and any reflected ray(s). Ignore any extra incident rays.	(1)
(c)	substitution into given equation (1) 1.3×300000 evaluation (1) 390000 (km)	Power of 10 error max 1 mark $3.9 \times$ $10^{5}(\mathrm{~km})$ 2 marks for correct numerical answer with no working shown Ignore any unit given by candidate.	(2)
(d)	D energy and information (1)		(1)

Total for Question = 7 marks

